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Abstract In order to determine the structure of polymer films
formed of cyclic chains (rings) we developed and studied a
simple coarse-grained model. Our main goal was to check
how the percolation and jamming thresholds in such a system
were related to the thresholds obtained for linear flexible
chains system, i.e., how the geometry of objects influenced
both thresholds. All atomic details were suppressed and poly-
mers were represented as a sequence of identical beads and the
chains were embedded to a square lattice (a strictly 2Dmodel).
The system was athermal and the excluded volume was the
only potential introduced. A random sequential adsorption
algorithmwas chosen to determine the properties of a polymer
monolayer. It was shown that the percolation threshold of
cyclic chains was considerably higher than those of linear
flexible chains while the jamming thresholds for both chain
architectures are very similar. The shape of adsorbed cyclic
chains was found to be more prolate when compared to aver-
age single chain.

Keywords Cyclic polymers . Jamming . Latticemodels .

Percolation . RandomSequential Adsorption

Introduction

Cyclic polymers have attracted the attention of researchers for
many years [1, 2]. The loop closure makes the chain’s archi-
tecture different from a linear one and causes differences in the

static and dynamic properties. The structure of cyclic chains
and their dynamic properties were subjects of numerous ex-
perimental [3–8], theoretical [9–11], and simulation [12–24]
studies although the discussion about their size and viscoelas-
tic properties is not closed yet. The introduction of an
adsorbing surface into a polymeric system dramatically
changes the properties of these systems [25]. The simulations
of adsorbed macromolecules are rather numerous and these
studies were mainly devoted to the distribution of polymer
segments and the behavior of such structural elements like
trains, loops, and tails. One has to remember that these models
were quasi-two-dimensional whith three-dimensional poly-
mer chains strongly adsorbed. Models of strictly two-
dimensional chains were also studied, but the question
concerning if the percolation and the jamming (the maximum
coverage of the substrate by the objects) in systems with ring
macromolecules was raised only once [26]. Percolation is a
process in which the system under consideration spans infi-
nitely. In finite systems the percolation occurs when a cluster
formed of sites occupied by objects approaches the size of the
space, i.e., it spans from one border of the system to the op-
posite one. The percolation phenomena were extensively stud-
ied theoretically but, in spite of this effort, there are still many
problems that are far from being understood especially for
larger and irregular objects like polymer chains [27].

The theoretical studies of the percolation in a film formed
from long polymer chains were limited to computer simula-
tion studies. The percolation in polymer systems on solid sur-
faces was mainly studied using the random sequential adsorp-
tion (RSA) algorithm [28–35]. In this method the polymer
chains were randomly deposited on the flat substrate. The
deposited chains were immobilized, thus, the adsorption was
irreversible. The objects could not cross themselves, i.e., the
excluded volume was introduced into the model. The perco-
lation and jamming thresholds can be determined directly by
these means. The most popular objects studied using the RSA
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method were stiff rods (needles) but some results, especially
the scaling properties of the both thresholds are still contra-
dictory [28–32, 36–42]. The other objects were ellipses [43,
44] or rectangles [45, 46] where the percolation depends
strongly on their aspect ratio. Short flexible and semi-
flexible chains were also studied bymeans of the RSAmethod
and it was shown that the percolation threshold in the case of
flexible chain decreases with the increase of the chain length
while for semi-flexible chains its changes were non-
monotonous [28, 47–54]. In another recent study the RSA
method was applied for some different macromolecular archi-
tectures [33]. This work showed that the influence of the chain
architecture (number of branches in a star polymer) on the
percolation and jamming thresholds was surprisingly weak.
The cooperative motion algorithm (CMA) was also applied
for studies of the percolation in two-dimensional lattice
polymer-solvent systems [55]. It was shown that the percola-
tion threshold did not simply scale with the local chain density
and two scalings regimes could be identified here. The cross-
overs between these regimes corresponded to rapid changes of
structural polymer properties and thus, to the changes of
chains’ fractal dimension. It should be noted that the scaling
theory of de Gennes predicts that polymer concentration φ* at
which the transition between dilute and semi-dilute regimes
occurs depends linearly on the local density in two-
dimensional systems [56].

In this work we studied the RSA-type model of polymer
chain adsorption on a planar and homogenous surface. The
model polymer chains were represented by the sequences of
beads and their positions were restricted to vertices of a square
lattice. The cyclic chains were randomly put on the substrate
and immobilized while the properties of the chains in the
formed film were determined. The paper is organized as fol-
lows: in the next section The model and the simulation
algorithmwe described the model and the simulation method.
In the section Results and discussion the results were present-
ed and compared to other macromolecular architectures and to
theoretical considerations. The section Conclusions contains
the most important conclusions concerning our results with
comparison to other macromolecular systems.

The model and the simulation algorithm

The coarse-grained model of macromolecules was realized by
the construction of cyclic sequences of N identical beads,
where a single bead represented some chemical mers. This
simple model was found to be sufficient for the studies of
properties of a chain as a whole [57]. In order to make the
calculations more efficient we have also introduced a lattice
approximation: the positions of polymer beads in space were
limited to vertices of a square lattice. The excluded volume
was the only potential introduced into the model and thus,
chains could not cross themselves. Other long-distance

interactions were assumed to be identical and, hence, the sys-
temwas athermal and the polymer chains were studied at good
solvent conditions. Our system was a square of the edge
L which represented a substrate with L×L points on
which the polymer chains were adsorbed. The RSA
was realized in the following way [55]. The chains were
picked at random from a pool, placed onto the substrate
and then they were immobilized: no diffusion of the
entire macromolecules and no conformational changes
were allowed. The adsorbed chains could not overlap
themselves – it was realized by the forbidding the dou-
ble occupancy of lattice points by polymer beads. Peri-
odic boundary conditions were imposed in both direc-
tions on the system studied. Before the RSA process
was performed a library containing a collection of the
chains conformations of a given length N had been pre-
pared [55]. For shorter chains the libraries were filled
with all possible conformations. For longer chains the
libraries were filled up with 107 different representative
conformations obtained in simulations. The algorithm,
which generated these conformations, was based on
the concept of Verdier-Stockmayer, i.e., local modifica-
tions of chain conformations were used [56–58]. Simu-
lation started with the empty substrate. First, we chose
randomly a location where the adsorbed chain would
start. If this lattice point was empty, we selected at
random one of the chain conformations from our library.
Then, we checked lattice sites of the substrate for this
conformation. If these sites were empty a new chain
was added to the system, otherwise the entire procedure
was repeated. After each chain was added we checked if
the percolation cluster was already formed. The RSA
method enables one to study the case of strong and
irreversible adsorption of objects [59]. A tree-based
union/find efficient algorithm invented by Neman and
Ziff was employed to keep track of cluster connectivity
[60]. After the percolation threshold was reached the
RSA procedure was continued until the jamming oc-
curred. Based on our previous findings described in de-
tail in ref. [28] we assumed that the jamming occurred
if at least 5×103×L2 unsuccessful attempts of adding a
new chain were made. In order to assure the correct
values we performed from 104 (for short chains N<
20) to 102 (for long chains) independent RSA proce-
dures and the results were averaged over these runs.

Results and discussion

The simulations were performed for cyclic chains consisted of
N=4 to N=100. The RSA method was found unable to study
longer chains especially near the jamming threshold in such
systems [49, 54]. The edge of the square substrate was
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changed between L=100 and L=2500 lattice units. The finite
size scaling procedure was done in order to obtain threshold
values for an infinite size of the system [35, 50, 59]:

cp Lð Þ−cp ∞ð Þ�� ��eL−1=v; ð1Þ

where cp(L) and cp(∞) are the percolation thresholds for the
Monte Carlo box L×L and for an infinite system respectively
while ν is a universal critical exponent (ν=4/3) [26]. Figure 1
presents the calculated values of cp versus (L/N)

-1/ν. All pre-
sented curves are linear and the extrapolation of percolation
thresholds towards an infinite system can be made according
to Eq. (1). The corrections to the thresholds obtained from
simulations in a large system 2000×2000 are of order of 10-
3, which was below the standard error of these quantities. In
the case of two-dimensional cyclic chains one can consider
two definitions of the polymer concentration:

1. The ratio of the number of polymer beads (n chains each
consisting of N beads) to the total number of sites in the
system, i.e., we consider the chain’s contour only:

φ1 ¼ nN=L
2: ð2Þ

2. The ratio of the total area covered by chains (contour plus
area surrounded by the chain, i.e. the excluded area Ai) to
the total number of sites in the system:

φ2 ¼
Xn

i¼1

Ai=L
2: ð3Þ

Figure 2 presents changes of the percolation threshold cp
for cyclic chains with the chain length N. For the sake of
comparison the results concerning the linear flexible
(acyclic) chains and stiff chains (needles) taken from ref.
[28] were also added to this figure. In order to compare the
results to flexible acyclic chains and needles the density of
ring macromolecules was calculated according to Eq. (2).
The flexible linear chains behave in the same way as was
found in other simulations [50, 51]. The threshold for rings
was found considerably higher than that for flexible chains in
the entire range of the chain lengths what was expected as ring
chains are smaller and more spherical than unbranched flexi-
ble chains of the same length and their perimeter is less jag-
ged. The threshold for cyclic chains decreases with N in the
entire range of the chain length with the exception for very
short chains consisted of N=4 and N=6 beads. The behavior
of these small objects is generally different than that of larger
objects (see below), as they are simply stiff squares and rect-
angles respectively. The needles’ behavior is different: initial-
ly the percolation threshold decreases when the size of the
objects increases and then starts to increase slightly which
was also observed in other simulations [32, 33, 38, 39]. It
can be explained by the formation of local highly ordered
blocks for longer objects: in spite of the high polymer concen-
tration there is still unoccupied area available and the size of
this area is comparable with the length of the needle [28, 31].
The possibility of the insertion of irregular objects like flexible
acyclic and cyclic chains has to be considerably smaller than
for needles.

The next parameter studied describing the film formed of
adsorbed chains is the jamming threshold. This threshold can
be determined analytically for one-dimensional systems only.
The plot of the jamming threshold cj for cyclic chains as the
function of the chain length N is presented in Fig. 3. Values of

Fig. 1 The percolation thresholds cp of rings as a function of (L/N)-1/ν.
The chain lengths are given in the legend

Fig. 2 The percolation threshold cp as a function of the chain length N.
The types of the objects used in the RSA procedure are given in the
legend
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this threshold for flexible acyclic chains and needles were
added to this figure for the sake of comparison. The plots for
flexible acyclic and cyclic chains were very similar for longer
chainsN>20 although the threshold values for rings are slight-
ly larger. Both jamming thresholds smoothly decrease in this
chain length range. The threshold for unbranched flexible
chains is monotonous for all chain systems under consider-
ation with faster decrease for short chains while that for cyclic
chains is smaller and non-monotonous in this region. The
reason of this behavior is the same as mentioned above, i.e.,
the influence of the lattice approximation. For short chains the
jamming threshold of needles and acyclic flexible poly-
mers are very similar while the latter remains almost
constant for larger values of N. Thus, the decrease of
the jamming threshold with the chain length for flexible
acyclic and cyclic chains is considerably faster than for
needles. This decrease is also faster than suggested for
short objects N-0.19 (needles) and N-0.17 (acyclic flexible
chains) [29–31, 36].

The ratios cp/cj for flexible cyclic and acyclic chains as
functions of the chain length N are presented in Fig. 4. The
cp/cj curves for flexible chains show the increase of this
ratio with the increasing chain length for N>20. For flexi-
ble acyclic and cyclic chains one can see a local maximum
on the curve near N=5 and N=10 respectively which is a
result of the lattice model used. For both chains architec-
tures cp/cj ratios seems to approach the unity asymptotical-
ly. In other words, not many chains could be added to the
system after the percolation was reached but one has to
remember that for longer chains sometimes the jamming
occurred before the percolation. The cp/cj ratio for needles
also exhibits a maximum at N=3 and increases consider-
ably slower approaching values close to 3/4. It results from
extra packing ability of stiff linear chains: local ordered
clusters of needles were formed [28]. The behavior of this

ratio for needles is exactly the same as for the anisotropic
case in ref. [42] and thus, it also does not confirm the
hypothesis of Vandewalle et al. that it is constant [31]. If
one assumes that in this case the ratio can be approximated
by the formula cp/cj=b×log(N)+c the value of constant is
b=0.123±0.003 while Tarasevich et al. [42] found b=0.119
±0.003. Flexible linear and cyclic chains do not exhibit
such behavior: the ratio increases faster for the first ones
and slower for the latter.

Figure 5 presents the same results as in Figs. 2 and 3 for
cyclic chains but the interior (exclude) area of rings was also
included, i.e., the polymer concentration on the substrate was
determined according to Eq. (3). In this figure we also present
jamming thresholds determined for squares taken from refs.
[31, 62] and [63]. With the exception of the shortest chains (N
<10) the behavior of cp is quite different: it increases slightly

Fig. 3 The jamming threshold cj as a function of the chain length N. The
types of the objects used in the RSA procedure are given in the legend

Fig. 4 Plot of the cp /cj ratio as a function of the chain lengthN. The types
of the objects used in the RSA procedure are given in the legend

Fig. 5 The percolation threshold cp and jamming threshold cj as
functions the chain length N. The polymer concentration was calculated
according to Eq. (3). The types of the objects used in the RSA procedure
are given in the legend
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with the increase of the chain length. It should be pointed out
that for cyclic polymers in the most cases, the percolation
occurred before jamming contrary to blocks (squares) [31,
61, 62]. The jamming threshold of filled rings behave non-
monotonously for N<20 and for longer chains it decreases

with N. The jamming thresholds of filled rings are in this
region larger than those of squares what means that irregular
objects are able to fill the space better.

The structure of a polymer monolayer on the substrate can
be clearly visible on snapshots of the system. Typical

Fig. 6 Snapshots of the system at
the percolation threshold for rings
(left) and needles (right). The case
of chain consisted ofN=8 (a),N=
18 (b), and N=70 (c) beads. The
percolation cluster is marked in
red
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snapshots showing the systems consisting of short (N=8),
intermediate (N=18), and long (N=70) chains near the
percolation threshold are shown in Fig. 6. Figure 7 pre-
sents snapshots of the same systems near the jamming
threshold. Snapshots of needles were also included into
Figs. 6 and 7 for the sake of comparison. The structure
of polymer films shown in the snapshots is generally

consistent with the above-discussed changes of both
thresholds with the object length. For both species one
can see the decrease of thresholds with the increasing
number of beads and the considerably lower thresholds
for needles when comparing large objects. The main
difference between systems with rings and needles at
both thresholds is a local ordering of the latter.

Fig. 7 Snapshots of the system at
the jamming threshold for rings
(left) and needles (right). The case
of chain consisted ofN=8 (a),N=
18 (b), and N=70 (c) beads
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The size of a polymer chain is usually described by the
mean-squared radius of gyration < S2 > calculated as:

S2
� � ¼ 1

N

XN

i¼1

ri−rCMð Þ2
D E

; ð4Þ
where ri is a vector denoting a position of an ith bead and rCM
denotes the position of the chain’s center-of-mass position.
The second parameter studied was the mean-squared diameter

R2
� � ¼ r1−rN=2

� �2D E
: ð5Þ

These size parameters are plotted in Fig. 8 as a function of the
chain length in the log-log scale. With the exception of short
chains (N<20) one can observe the scaling behavior of these
parameters as Nγ. The scaling exponent was found to be 1.494
±0.005 for<R2>and 1.477±0.006 for<S2>which is close to the
theoretical value 3/2 and to other computer simulation results
1.52 and 1.494 for R2 and S2 respectively [12]. It has to be
remembered that this is the exponent characteristic for single
chains (diluted solutions) which is obvious as our adsorbed
chains were produced as conformations that were characteristic
for diluted solutions; in dense 2-dimensianal melts this exponent
approaches the value 1 [48, 63]. A quite different behavior of
polymer’s size forN≤20 is caused by a short chain effect and by
the lattice approximation. The latter introduced even large fluc-
tuations of the mean-square radius of gyration for very short
chains, which are very stiff: a ring consisting of N=4 beads
appears in one conformation only as a square, the ring with
N=6 beads forms one conformation too (a rectangle) occurring
in two orientations and ring with N=8 beads is the first one that
occurs in two different conformations.

The next problem under consideration concerned the shape
of adsorbed chains. In order to study the instantaneous shape

of ring polymers the principal axis of inertia λ1
2 and λ2

2 (with
λ2
2≥λ12) were determined from the gyration tensor. These

values fulfill the relation S2=λ1
2+λ2

2. The shape of a single
chain can be described by two parameters called shape factors:

s f i ¼ λ2
i =S

2: ð6Þ

The other parameter that quantify the shape of a single
chain is the asphericity factor δ which can be calculated as
[64]:

δ ¼
λ2
1−λ

2
2

� �2D E

λ2
1 þ λ2

2

� �2D E : ð7Þ

This parameter takes value δ=1 for a fully extended chain
(a one-dimensional rod) and δ=0 for a disk. Figure 9 presents

Fig. 8 The mean-squared diameter < R2 > and the mean-squared radius
of gyration < S2 > as functions of the chain lengthN. The solid line on the
right indicates the theoretical slope 3/2

Fig. 9 The shape factors sfi as functions of the chain lengthN: the case of
the entire library of conformations (library) and only those used
successfully in the RSA procedure (RSA)

Fig. 10 The asphericity δ as a function of the chain length N: the case of
the entire library of conformations (library) and only those used
successfully in the RSA procedure (RSA)
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shape factors sfi as functions of the chain length N for poly-
mers put on the substrate. One can observe that for short
chains these parameters highly fluctuated which is expected
because of the lattice representation. Then, for N>24 they
stabilize and increase moderately approaching values 0.72
and 0.28. These values are very close to simulation results
0.71 and 0.29 obtained for a similar chain model [14, 16].
The values of shape factors averaged over the entire pool of
conformations were added for the sake of comparison to this
figure. The comparison of both these pairs of parameters
shows that chains that are successfully put on the plane are
more prolate than an average single chain from the pool. This
behavior can be confirmed by the analysis of the asphericity
factor. The influence of the chain length on ashpericity factor δ
is shown in Fig. 10. This parameter approaches the value 0.24
for the longest chains under consideration while in the entire
pool of conformations it is considerably lower and close to
0.20. Theoretical predictions for unbranched flexible chains
without the excluded volume give the value δ=2(d+2)/(5d+
2), where d is the dimensionality of space which in 2D case
makes δ≈0.57 [64]. For two-dimensional rings this parameter
was theoretically established as 0.2625 for an infinitely long
chain [65]. Monte Carlo simulations of models that were sim-
ilar to ours (single chains on a square lattice) predicted that the
asphericity increases with the chain length approaching δ=
0.211 for N=32 which is close to that of our library of con-
formations (what is interesting, chains with the excluded
volume were more spherical than random flight chains in
two-dimensions) [16]. Thus, one can conclude that in the
two-dimensional space cyclic chains are more spherical than
flexible linear chains but still considerably prolate.

Conclusions

A simple coarse-grained model of strongly and irreversibly
adsorbed (two-dimensional) ring polymer chains was devel-
oped. In this model all atomic details were suppressed and
chains were represented as cyclic sequences of statistical seg-
ments. Positions of polymer segments were limited to vertices
of a square lattice and the excluded volume was the only
interaction within the system under consideration. Properties
of these macromolecular systems were determining by means
of the random sequential adsorption simulation technique.
The RSA algorithm appeared to be quite efficient for chains
of moderate length (no longer than 100 beads for the square
lattice model). The percolation threshold was found higher for
rings when compared to flexible linear chains because rings
were more compact and better packed in the dilute and
semidilute solutions. The percolation threshold decreased
with the increase of the chain length for both kinds of objects.
Contrary to the differences between percolation thresholds the
jamming thresholds (the maximum coverage of the substrate)

are very similar for both chain architectures. If one considers a
cyclic chain together with its interior the jamming threshold
behaves similarly to that of regular hard objects like squares
but packing abilities of rings are higher.
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